研究成果
期刊论文|Inertia Response Coordination Strategy of Wind Generators and Hybrid Energy Storage and Operation Cost-Based Multi-Objective Optimizing of Frequency Control Parameters
发布时间:2022年05月02日 21:52    作者:    点击:[]

Inertia Response Coordination Strategy of Wind Generators and Hybrid Energy Storage and Operation Cost-Based Multi-Objective Optimizing of Frequency Control Parameters


作者:Rahimi, T., Ding, L., Kheshti, M., Faraji R.,Guerrero, J.M., Tinajero, G.D.A.

摘要:Due to the high penetration of renewable energy resources in microgrids (MGs), the grid inertia becomes low which leads to the grid to be vulnerable to large disturbances. The energy storage devices can play an important role to enhance the inertia of MGs. However, due to the high investment cost of storages or their dp/dt limitation, the installed energy storages cannot cover the challenge of high df/dt. A prominent solution to solve the problem is to use the inertia response of the wind generators. However, relatively high second frequency nadir is the main drawback of using the inertia response of the wind generators which may impose an extensive disturbance to MGs. Accordingly, a coordinated operation strategy for MGs between wind generator and hybrid energy storage (HES) system is proposed in this paper. In addition, to improve the inertia response of the MG; providing high-quality communication infrastructures with low delay and increasing the Ultracapacitor capacity have been paid attention. In this paper, the costs of the installed Ultracapacitor and quality of communication services are defined as the operation cost. Guaranteeing enough frequency damping for the MG with low operation cost are two conflict objectives. Therefore, a multi-objective optimization method is used to set the controllers' values and reduce the operation cost. The results confirmed that the effectiveness of the proposed strategy to control hybrid power storage in coordination with the wind generator and the frequency recovery process is improved. Also, employing the optimum values guaranteed the frequency damping effectively with low operation cost. The Integral Absolute Error (IAE) value and operation cost are reduced by 13.6% and 32%, respectively. Also, the simulation results show that the maximum MG frequency deviation and maximum df/dt is well compatible with different standards in the presence of load perturbations and different wind speeds.

发表于:IEEE Access ( Volume: 9)


上一条:期刊论文|Soft-Switched Three-Port DC-DC Converter with Simple Auxiliary Circuit 下一条:期刊论文|Efficient Multi-Port Bidirectional Converter with Soft-Switching Capability for Electric Vehicle Applications

关闭

Copyright © 2021 www.capabilitiesgroup.com All rights reserved. 版权所有:九州官方网站(中国)有限公司官网科研团队 电话:0531-88392369 传真:0531-88392369 山东大学千佛山校区 济南市经十路17923号 邮编 250061 山东大学兴隆山校区 济南市二环东路12550号 邮编 250002