研究成果
期刊论文|MPC Based Control Strategy for Battery Energy Storage Station in a Grid with High Photovoltaic Power Penetration
发布时间:2022年05月03日 09:50    作者:    点击:[]

MPC Based Control Strategy for Battery Energy Storage Station in a Grid with High Photovoltaic Power Penetration


作者:Zhang, F., Fu, A., Ding, L., Wu, Q.

摘要:The AGC (automatic generation control) reserve capacity requirement in a gird with high photovoltaic (PV) power penetration is much higher than that in a traditional grid in order to address the rapid PV power fluctuation, which also means a higher operating cost of the power grid. In contrast with the dispersed energy storage units located in PV plants, the integration of battery energy storage station (BESS) in a power grid can effectively mitigate the PV power fluctuation and decrease the AGC reserve capacity, reducing the operating cost from the aspect of the power grid operator. However, currently BESS is still an expensive option in view of the high price per unit size. Consequently, the determined BESS with size-limited capacity needs to be fully utilized to improve the economic performance of both BESS and the power grid. For this reason, a novel model prediction control (MPC) based control strategy for BESS is presented in this paper, aiming to minimize the equivalent operating cost of BESS during each control step. Specifically, the impact of PV power on AGC reserve capacity and the necessity of BESS in a grid with high PV power penetration are firstly discussed. And then, based on the equivalent cost analysis of BESS, an objective function is presented aiming to minimize the equivalent operating cost of the power gird and BESS during each control period, including the AGC payment and BESS operating cost. Besides, to prolong the lifetime of BESS, a protection measure is presented via the adjustment of BESS charge/discharge power. Afterwards, the application steps of the presented control strategy are presented. Finally, the proposed control strategy is verified using actual PV power data in a grid with high PV power penetration.

发表于:International Journal of Electrical Power and Energy Systems ( Volume: 115, Feb. 2020)


上一条:期刊论文|Optimal Photovoltaic Array Dynamic Reconfiguration Strategy Based on Direct Power Evaluation 下一条:期刊论文|HESS Sizing Methodology for an Existing Thermal Generator for the Promotion of AGC Response Ability

关闭

Copyright © 2021 www.capabilitiesgroup.com All rights reserved. 版权所有:九州官方网站(中国)有限公司官网科研团队 电话:0531-88392369 传真:0531-88392369 山东大学千佛山校区 济南市经十路17923号 邮编 250061 山东大学兴隆山校区 济南市二环东路12550号 邮编 250002